<u>УДК 621.894</u>

ЭНЕРГОНАГРУЖЕННОСТЬ САМОВЕНТИЛИРУЕМОГО ДИСКА С ШИПАМИ ТОРМОЗА ТРАНСПОРТНОГО СРЕДСТВА

А.Х. ДЖАНАХМЕДОВ^{*}, Д.А. ВОЛЬЧЕНКО^{**}, М.Я. ДЖАВАДОВ^{*}, Н.А. ВОЛЬЧЕНКО^{***}, Е.С. ФЕДОТОВ^{***}, В.С. ВИТВИЦКИЙ^{**}

В материалах статьи оценены критерии эффективности самовентилируемых дисков с цилиндрическими шипами тормозов, их тепловой баланс и энергонагруженность применительно к транспортным средствам.

Ключевые слова: транспортное средство, дисково-колодочный тормоз, диск с шипами, левый полудиск, правый полудиск с фланцем, тепловой баланс, энергонагруженность.

Введение. Эффективность действия самовентилируемых дисково-колодочных тормозов при движении транспортных средств и в режиме торможения зависит от интенсивности вынужденного охлаждения пар трения [1, 2]. При этом важную роль играют площади поверхностей теплообмена, обеспечивающие сток тепловых потоков в одном направлении. Поверхность теплообмена может быть увеличена за счет выполнения ребер, образующих дифузорные каналы в правом полудиске с фланцем, а также цилиндрические шипы между полудисками. Тем не менее проблема повышения эффективности вынужденного воздушного охлаждения самовентилируемых дисков тормозов транспортных средств остается актуальной.

Постановка задачи: определить эффективность дисково-колодочных тормозов транспортных средств; оценить тепловой баланс самовентилируемого диска с цилиндрическими шипами тормоза и его энергонагруженность.

Цель работы – прогнозирование теплового баланса самовентилируемого диска с цилиндрическими шипами и его энергонагруженности, а также влияние уровня энергонагруженности на эффективность действия тормоза транспортного средства.

^{*} Азербайджанская инженерная академия (г. Баку, Азербайджан)

Ивано-Франковский национальный технический университет нефти и газа (Украина)

^{****} Кубанский государственный технологический университет (г. Краснодар, Россия) E-mail: dzhanakhmedov@yahoo.com

Определение эффективности дисково-колодочных тормозов транспортных средств.

Критериями оценки эффективности дисково-колодочных тормозов транспортных средств в нагретом состоянии являются результаты испытаний типа I и II в соответствии с Правилами 13 ЕЭК ООН (Европейской Экономической Комиссии при Организации Объединенных Наций). Согласно этому документу предварительные этапы испытаний I и II проводятся методами последовательных и длительных торможений, в конце которых реализуются экстренные торможения автотранспортного средства до его полной остановки (основной этап). Значительный интерес представляет сопоставление температурных режимов пар трения дисково-колодочных тормозов при проведении предварительных этапов испытаний типа I и II.

Энергии, воспринимаемые парами трения дисково-колодочных тормозов транспортных средств на предварительных этапах испытаний I и II, составляют:

 $E = 20G_a(V_H^2 - V_K^2)/2 \cdot 3, 6^2 = 2083G_a, \ \exists \mathbf{x} (1) \quad E'' = G_a gS[i - (f + \gamma_T)] = 2354G_a, \ \exists \mathbf{x} (2)$

где G_a – масса транспортного средства; V_H , V_K – регламентируемые скорости, соответственно, в начале и конце торможения; g – ускорение свободного падения, м/с²; i – величина уклона дороги (i=0,06); S – протяженность спуска, (6 км); f – коэффициент сопротивления качению; γ_T – удельная тормозная сила, создаваемая тормозом-замедлителем (f+ γ_T = 0,02).

Из анализа результатов расчетов, проведенных по зависимостям (1) и (2), следует, что общая энергонагруженность пар трения дисково-колодочных тормозов на предварительном этапе испытаний II приблизительно на 12% выше, чем при испытаниях I, несмотря на то, что условия теплоотвода лучше при длительном подводе теплоты к тормозному диску. При циклическом нагружении тормоза (испытания типа I) имеет место импульсный подвод теплоты к тормозному диску.

Оценка теплового баланса самовентилируемого диска с шипами. Определение теплового баланса самовентилируемых дисков тормоза транспортного средства в режимах движения и торможения позволит оценить эффективность вынужденного воздушного охлаждения матовых и полированных поверхностей дисков, а также составляющую интенсивности кондуктивного теплообмена между конструктивными элементами диска [2, 3].

Согласно рис. 1 *а* дисково-колодочный тормоз 1 содержит суппорт 2, в котором находятся тормозные колодки 3 с фрикционными накладками 4. Суппорт 2 закреплен на кронштейне цапфы (на рис. 1 *а* не показаны) и подключен к гидроприводу (не показан). Тормоз 1 имеет правый полудиск 5 с фланцем 6 и левый полудиск 7. Со стороны внутренних поверхностей 8 полудиски 5 и 7 соединены между собой цилиндрическими шипами 9, которые покрыты теплоизоляцией 19. Шипы 9 расположены на внешнем r_1 и внутреннем r_2 радиусах поясов трения 10 полудисков 5 и 7.

Для измерения поверхностных температур пар трения дисково-колодочного тормоза переднего моста транспортного средства в его узел трения помещают термоэлектроды 11 и 12 термопар (рис. 1 *д*). Двухканальная керамическая трубка 14 устанавливается в отверстие 15 фрикционной накладки 4 и выводится заподлицо ее рабочей поверхности. В трубку 14 диаметром 4,0 мм вложены термоэлектроды 11, 12 термопары, изготовленной из хромель-копелевой проволоки диаметром 0,4 мм.

Рис. 1 а, б, в, г, д, е. Общий вид самовентилируемого дисково-колодочного тормоза (a); вид А фрикционного узла (б); самовентилируемый тормозной диск с цилиндрическими ишпами (в); полудиск с очертанием радиусов пояса трения и позиций 1 – 9 накладки на его поверхности (г); вид В фрикционного узла с вмонтированными термопарами (д); теплоизолированный цилиндрический ишп (е)

Положительным термоэлектродом 11 является хромелевая проволока, а отрицательным 12 – копелевая проволока. Головка термопары 13 (в виде сферы), взаимодействующая с рабочей поверхностью тормозного диска 1, изготовлена из высокотемпературного медного припоя в виде спая диаметром 3,0 мм и установлена в ограничительное кольцо 18. Последнее препятствует выходу из строя головки термопары 13 и способствует ее работе до полного износа фрикционной накладки 4. Двухканальная керамическая трубка 14 (керамическая трубка состоит из двух частей) установлена с изоляционными втулками 17 и 18 в отверстие 16 тормозной колодки 3. Длина термоэлектродов 11 и 12 составляет 200...350 мм и выбирается из условия, чтобы за время экспериментов холодный спай не успел прогреться. Выводы на регистрирующую аппаратуру осуществлялись медными проводами. Термопара перед ее установкой тарировалась вместе с соединительными проводами.

Транспортное средство разгоняют до заданной скорости и выполняют циклические торможения дисково-колодочным тормозом путем прикладывания и снятия усилия с педали тормоза (на рис. 1 не показаны). С помощью тормозных колодок 3 фрикционные накладки 4 рабочими поверхностями прижимаются к рабочей поверхности тормозных дисков 1. После завершения циклических торможений транспортным средством снимают нагрузку с тормозной педали и при помощи гидропривода отводят тормозные колодки 3 с накладками 4 от рабочей поверхности тормозного диска 1, т. е. от его поясов трения 10.

При движении транспортного средства, в тормозном режиме самовентилируемые дисково-колодочные тормоза работают следующим образом. При нажатии на педаль тормоза водителем срабатывает гидропривод и накладки 4 (рис. 1 *а*) своими рабочими поверхностями фрикционно взаимодействуют с поясами трения 10 полудисков 5 и 7, что способствует замедлению транспортного средства.

На процессы механического, электрического, теплового и химического характера, протекающие на фрикционном контакте, существенное влияние оказывает геометрия микровыступов взаимодействующих поверхностей, которые в реальности отличаются от идеальной поверхности. Наличие микровыступов ведет к тому, что при сближении рабочих поверхностей пар трения под внешней нагрузкой взаимодействие происходит на пятнах контактов микровыступов (дискретный фрикционный контакт) с большими удельными нагрузками, сопровождающееся генерированием электрических токов и интенсивным тепловыделением. Особенно это касается циклического (тип I) и длительного (тип II) испытаний дисково-колодочных тормозов транспортных средств.

При движении транспортного средства матовые и полированные поверхности полудисков 5 и 7, а также поверхности цилиндрических шипов 9 омываются встречными потоками воздуха. Последний, попадая внутрь полудисков 5 и 7 и между цилиндрическими шипами 9, завихряется, в результате чего температура воздушных потоков понижается, а эффект вынужденного охлаждения внутренних поверхностей 8 полудисков 5 и 7 возрастает. При фрикционном взаимодействии накладок 4 с поясами трения 10 полудисков 5 и 7 они движутся по их свежему следу (см. рис. 1 *г*, позиции 1–9). В результате взаимодействия встречных потоков воздуха с указанными выше поверхностями правого 5 с фланцем 6 и левого 7 полудисков, соединенных между собой цилиндрическими шипами 9, происходит вынужденный конвективный и радиационный теплообмен.

Способ оценки теплового баланса самовентилируемого диска с цилиндрическими шипами для пар трения дисково-колодочного тормоза различных подкатегорий транспортных средств реализуют в два этапа.

На первом этапе транспортное средство движется в режиме циклических торможений. При этом определяют энергонагруженность пар трения, т. е. их поверхностную температуру t_1 и степень ее повышения (t_1 - t_0) (где t_0 – температура окружающего воздуха) с помощью спая термопары 13, вмонтированной в тело фрикционных накладок 4.

На втором этапе транспортное средство движется в режиме циклических торможений с теплоизолированными 19 цельными цилиндрическими шипами 9. При этом определяют энергонагруженность левых и правых пар трения, т. е. их поверхностные температуры t_2 и t_3 , а также величину их повышения (t_2 - t_0) и (t_3 - t_0). Величины отношений (t_1 - t_0)/(t_2 - t_0) и (t_1 t_0)/(t_3 - t_0) указывают долю теплоты, которая отводится правым 5 с фланцем 6 и левым 7 полудисками в окружающую среду.

Таким образом, предложен метод оценки теплового баланса самовентилируемого диска с цилиндрическими шипами пар трения дисково-колодочного тормоза различных категорий транспортных средств.

Энергонагруженность самовентилируемого диска с цилиндрическими шипами. Проектирование самовентилируемых тормозных дисков оптимальной конструкции для данного типа транспортных средств отожествляется с равнопрочностью их конструктивных элементов. Под равнопрочностью подразумевается равенство максимальных и эквивалентных напряжений или коэффициентов запасов по напряжениям, т.е. равновероятность разрушения по всех расчетных сечениях. Наиболее опасным сечением при фрикционном взаимодействии пар трения «диск – накладка» является пояс трения самовентилируемого диска вследствие его неравномерного нагревания, вызванного низким коэффициентом взаимного перекрытия пар трения тормоза (рис. 2).

Рис. 2 а, б, в, г, д, е. Распределение температурных полей в элементах самовентилируемого тормозного диск с цилиндрическими шипами: а – фронтальный вид диска с фланцем: б – осевой разрез диска с фланцем; в – сечение диска по цилиндрическим шипам; г – вид А правого полудиска с фланцем; д – вид Б левого полудиска; е – диметрическая проекция с четвертным вырезом диска с шипами и с фланцем

Моделирование энергонагруженности самовентилируемого диска с цилиндрическими шипами тормоза грузового автомобиля модели МАN марки TGA 26.420 [4 – 6] производилось при циклических торможениях (n=20) со скоростями (V_1 =60 км/ч; V_2 =30 км/ч;) с интервалом между торможениями 45 с при следующих исходных данных: диаметр тормозного диска d = 450 мм, радиусы поясов трения диска $r_1 = 400$ мм; $r_2 = 230$ мм; температура на поверхности пояса трения диска достигала $t_n = 390$ °C; удельные нагрузки в паре трения были p=5 МПа; коэффициент теплоотдачи \propto_1 от рабочих поверхностей диска колебался от 50 до 75 Вт/($M^{2.0}$ C).

Анализ распределения температурных полей в самовентилируемом тормозном диске с цилиндрическими шипами (см. рис. 2) показал следующее:

– согласно рис. 2 б колебания температуры во фланце изменялись от 168 до 265 0 С, и наибольшей величины 300 0 С она достигала в месте спряжения фланца с левым полудиском;

– в сечении диска по шипам (см. рис. 2 e) наблюдалось колебание температуры от 360 0 C, на максимальной его окружности, до 330 0 C на минимальной его окружности;

– вид A со стороны фланца на диск (см. рис. 2 e) показал, что температуры изменялись от 340 до 390 0 C, а наличие круговых температурных зон способствовало увеличению температурных градиентов между сопряженными поверхностями;

вид Б со стороны левого полудиска (см. рис. 2 д) показал увеличение температурных круговых зон, граничащих с телом левого полудиска, что способствовало уменьшению температурных градиентов между сопряженными поверхностями;

– на диметрической проекции с четвертным вырезом диска с шипами и с фланцем (см. рис. 2 г) четко видно изменение температуры от 168 до 390 °С, что указывает на неравномерность распределения температурных полей по элементам диска, связанную с их различной металлоемкостью.

Двусторонний подвод теплоты в процессе торможения дисково-колодочным тормозом транспортного средства накладывает определенные требования к условиям распространения тепловых потоков. При этом:

– входящий тепловой поток равен $q = \propto_1 (t_\tau - t_B)$ (где t_τ , t_B – температуры: поверхности пояса трения и омывающего воздуха);

– проходящий тепловой поток равен $q_1 = k(t_{T1} - t_{T2})$ (где k – коэффициент теплопередачи; $k = \left(\frac{\delta_1}{\lambda_1}\right)^{-1} + \left(\frac{\delta_2}{\lambda_1}\right)^{-1} + \left(\frac{\delta_3}{\lambda_1}\right)^{-1}$; δ_1 , δ_3 – толщины: левого и правого полудисков; δ_2 – длина цилиндрического шипа; λ_1 – коэффициент теплопроводности материалов конструктивных элементов диска; t_{T2} – температура пояса трения правого полудиска с фланцем;

– выходящий тепловой поток $q_2 = \propto_2 (t_{\rm T2} - t_{\rm B})$ (где \propto_2 – коэффициент теплоотдачи с поверхностей правого полудиска).

Параметры $(\alpha_i)^{-1}$ и $\frac{\delta_i}{\lambda_i}$ называются, соответственно, термическим сопротивлением: теплоотдачи и теплопроводности.

Таким образом, тепловой поток движется от левого полудиска через его толщину правого полудиска и фланец и после него рассеивается в омывающий их воздух.

Анализ распределения тепловых потоков в элементах самовентилируемого тормозного диска с цилиндрическими шипами (рис. 3) подтвердил требования к величинам тепловых потоков, пронизывающих тело конструктивных элементов диска.

Анализ распределения напряжений по теории Мизеса в элементах самовентилируемого диска с цилиндрическими шипами (рис. 4) показал следующее:

 – согласно рис. 4 б колебание температурных напряжений во фланце изменялось от 0,1 до 115 МПа и наибольшей величины 180 МПа оно достигало в месте сопряжения фланца с левым полудиском, что существенно влияет на величину градиента напряжений;

– в сечении диска по шипам (рис. 4 *в*) наблюдалось заметное колебание градиентов напряжений между его торцом и круговыми зонами минимальных напряжений;

– вид А со стороны фланца на диск (рис. 4 г) показал, что напряжения изменялись от 20 до 70 МПа, а наличие суженных круговых зон напряжений указывает на увеличение их градиентов между сопряженными поверхностями;

 вид Б со стороны левого полудиска (рис. 4 ∂) показал расширение круговых зон напряжений, которые граничат с телом полудиска, что способствовало уменьшению их градиентов между сопряженными поверхностями;

– на диметрической проекции с четвертным вырезом диска с шипами и с фланцем (рис. 4 г) проиллюстрировано изменение напряжений от 20 до 370 МПа, что указывает на неравномерность распределения полей напряжений по конструктивным элементам диска. Энергонагруженность самовентилируемого диска с шипами тормоза транспортного средства

Рис. 3 а, б, в, г, д, е. Распределение тепловых потоков в элементах самовентилируемого тормозного диск с цилиндрическими шипами: а – фронтальный вид диска с фланцем: б – осевой разрез диска с фланцем; в – сечение диска по цилиндрическим шипам; г – вид А правого полудиска с фланцем; д – вид Б левого полудиска; е – диметрическая проекция с четвертным вырезом диска с шипами и с фланцем.

Рис. 4 а, б, в, г, д, е. Распределение напряжений по теории Мизеса в элементах самовентилируемого тормозного диск с цилиндрическими шипами: а – фронтальный вид диска с фланцем: б – осевой разрез диска с фланцем; в – сечение диска по цилиндрическим шипам; г – вид А правого полудиска с фланцем; д – вид Б левого полудиска; е – диметрическая проекция с четвертным вырезом диска с шипами и с фланцем

Заключение. В результате исследования установлено одностороннее распространение тепловых потоков через конструктивные элементы самовентилируемого тормозного диска, вызывающих температурные напряжения в местах сопряжений их поверхностей.

REFERENCES

- Osobennosti ocenki intensivnosti teploobmena samoventiliruemyh diskovo-kolodochnyh tormozov transportnyh sredstv // А.І. Volchenko, D.A. Volchenko, N.A. Volchenko [i dr.] // Vostochno-Evropejskij zhurnal peredovyh tehnologij. – Harkov, №1/5(97), 2019. – S. 47–53.
 Особенности оценки интенсивности теплообмена самовентилируемых дисково-колодочных тормозов транспортных средств // А.И. Вольченко, Д.А. Вольченко, Н.А. Вольченко [и др.] // Восточно-Европейский журнал передовых технологий. – Харьков, №1/5(97), 2019. – С. 47–53.
- Proektnyj i poverochnyj raschet frikcionnyh uzlov barabanno- i diskovo-kolodochnyh tormozov transportnyh sredstv / A.Kh. Janahmadov, A.I. Volchenko, N.A. Volchenko i dr. – Baku: Apostroff. 2016. – 366 s. Проектный и поверочный расчет фрикционных узлов барабанно- и дисково-колодочных тормозов транспортных средств / А.Х. Джанахмедов, А.И. Вольченко, Н.А. Вольченко и др. – Баку: Апострофф. 2016. – 366 с.
- Energeticheskie urovni razlichnyh tipov kontaktov mikrovystupov par trenija / M.V. Kindrachuk, A.I. Volchenko, D.A. Volchenko, V.S. Skrypnyk, A.V. Voznyj // Fiz.-him. mehanika materialiv. 2018. №6. S. 83–92. Энергетические уровни различных типов контактов микровыступов пар трения / М.В. Киндрачук, А.И. Вольченко, Д.А.
- Вольченко, В.С. Скрыпнык, А.В. Возный // Фіз.-хім. механіка матеріалів. 2018. №6. С. 83–92.
 Alamovskij A.A. COSMOS Works. Osnovy rascheta konstrukcij na prochnost v srede SolidWorks / A. A. Alamovskij. М.: Izd-vo DMK Press, 2010. 784 s., il. (Seriya «Proektirovanie»).
 Алямовский А.А. COSMOS Works. Основы расчета конструкций на прочность в среде SolidWorks / А.А. Алямовский.
- М.: Изд-во ДМК Пресс, 2010. 784 с., ил. (Серия «Проектирование»).
 5. Napryazhenno-deformirovannoe sostoyanie razlichnyh tipov diskov tormoznyh ustrojstv transportnyh sredstv / D.A.
- Volchenko, N.A. Volchenko, V.S. Srypnyk, V.J. Malyk, D.J. Juravlev // Problemi tertya ta znoshuvannja: nauk.-tehn. zb. K.: NAU. – 2018. – Vip. 2(79). – S. 16–27.

Напряженно-деформированное состояние различных типов дисков тормозных устройств транспортных средств / Д.А. Вольченко, Н.А. Вольченко, В.С. Срыпнык, В.Я. Малык, Д.Ю. Журавлев // Проблеми тертя та зношування: наук.-техн. зб. – К.: НАУ. – 2018. – Вип. 2(79). – С. 16–27.

6. Janahmadov A.Kh., Volchenko A.I., Pirverdiev E.S., Zhuravlev D.Y., Vozniy A.V., Vitvitskiy V.S. Raschet i konstruirovanie par treniya diskovo-kolodochnyih tormozov transportnyih sredstv (chast I) // Vestnik Azerbaij-anskoy inzhenernoy akademii, 2018. T. 10, №4, s. 7-16.

Джанахмедов А.Х., Вольченко А.И., Пирвердиев Е.С., Журавлев Д.Ю., Возный А.В., Витвицкий В.С. Расчет и конструирование пар трения дисково-колодочных тормозов транспортных средств (часть I) // Вестник Азербайджанской инженерной академии, 2018. Т. 10, №4, с. 7-16.

NƏQLİYYAT VASİTƏSİNİN ƏYLƏCİN MİLLƏRİ İLƏ ÖZÜVENTİLYASİYA OLUNAN DİSKİN ENERJİ TUTUMU

Ə.X. CANƏHMƏDOV, D.A. VOLÇENKO, M.Y. CAVADOV, N.A. VOLÇENKO, Y.S. FEDOTOV, V.S. VİTVİSKİY

Məqalədə əyləclərin silindrik milləri ilə özüventilyasiyalı disklərin effektivliyinin meyarları, onların istilik balansı və nəqliyyat vasitələrinə uyğun olaraq enerji yüklənməsi qiymətləndirilib.

Açar sözlər: nəqliyyat vasitəsi, disk-kündəli əyləc, milləri olan disk, sol yarımdisk, flanslı sağ yarımdisk, istilik balansı, enerjiyüklənmə.

ENERGY-LOADING OF SELF-VENTILATED DISC OF VEHICLE WITH BRAKING SPIKES

A.Kh. JANAHMADOV, D.A. VOLCHENKO, M.Y. JAVADOV, N.A. VOLCHENKO, E.S. FEDOTOV, V.S. VITVITSKY

The article examines the efficiency criteria of self-ventilated disks with the cylindrical baking spikes, their thermal balance and energy loading with respect to vehicle.

Keywords: vehicle, disk-show brake, disk with spikes, left half-disk, right half-disk with flange, heat balance, energy-loading.

 Поступило в редакцию:
 01.04. 2019

 После доработки:
 16.09.2019

 Принято к публикации:
 20.09.2019