BAKI UNİVERSİTETİNİN XƏBƏRLƏRİ

<u>№1</u>

Fizika-riyaziyyat elmləri seriyası

2021

UDK 547.962:541.63

ANTİHİPERTENZİV DİPEPTİDİN KONFORMASİYA VƏ ELEKTRON PARAMETRLƏRİ

S.Q.RƏHİMZADƏ, G.Ə.HAQVERDİYEVA Bakı Dövlət Universiteti sararahimzada@bsu.edu.az, gulnaraakverdieva@bsu.edu.az

Təqdim olunmuş işdə antihipertenziv Val-Trp dipeptidin kompüter modelləşdirilməsi yerinə yetirilmişdir. Molekulun fəza quruluşu nəzəri konformasiya analizi üsulu ilə tədqiq olunmuş, elektron quruluşu kvant-kimyəvi hesablamalar əsasında araşdırılmışdır. Dipeptidin optimal konformasiyalarının həndəsi, enerji və elektron parametrləri hesablanmışdır. Müəyyən olunmuşdur ki, bu ardıcıllığın fəza quruluşu əsas zəncirin açıq və bükülü formasında olan konformasiyalar ilə təsvir oluna bilər. Bu molekulun iki xarakterik optimal konformasiyalarının fəza və elektron quruluşlarında oxşar və fərqli xüsusiyyətlər müəyyənləşdirilmişdir.

Açar sözlər: antihipertenziv dipeptid; fəza quruluşu; konformasiya; elektron parametrləri

Giriş

Son illərdə, bir sıra xəstəliklərin qarşısının alınması və müalicəsində qida maddələrinin tərkibinə daxil olan bioloji aktiv peptidlərdən geniş istifadə olunur. Belə ki, tərkibində triptofan olan dipeptidlər hipertoniya, xroniki böyrək xəstəliyi və ürək çatışmazlığı kimi müxtəlif xəstəliklərin müalicəsi üçün istifadə olunur. Bu sıradan bioloji aktiv əlavə olan Val-Trp (L-valyl-L-tryptophan) dipeptidi əsasən angiotenzin çevirici fermentin (AÇF) inhibitoru kimi tanınır [1-2]. Orqanizmdə bioloji aktiv molekulların fizioloji təsirləri bilavasitə onların konformasiya və elektron xassələri ilə bağlıdır. Təqdim olunmuş işdə qeyd olunan dipeptidin konformasiya profilləri və elektron quruluşu tədqiq olunmuşdur.

Hesablama üsulları

Val-Trp dipeptidin fəza quruluşu mexaniki model çərçivəsində tədqiq olunmuşdur. Molekulyar mexanika metodu Born-Oppenheymer yaxınlaşmasına əsaslanır. Bu yaxınlaşmaya əsasən molekulun enerjisi nüvələrin koordinatlarından asılı potensial funksiya kimi götürülür. Molekulun potensial enerjisini təsvir edən bu funksiya vasitəsilə onun fəza quruluşunu müəyyən etmək olur.

Molekulyar mexanika metodunda molekuldaxili qarşılıqlı təsir enerjisi birbirilə birbaşa kimyəvi rabitədə iştirak etməyən atomların geyri-valent garşılıqlı təsir enerjisinin $(E_{a,v})$, hidrogen rabitəsi enerjisinin $(E_{h,r})$, birqat kimyəvi rabitələr ətrafında baş verən daxili fırlanma enerjisinin $(E_{tors.})$ və atomların parsial yükləri arasındakı elektrostatik qarşılıqlı təsir enerjisinin (E_{elst}) additiv cəmi kimi götürülür. Tədqiqatda istifadə edilmis potensial funksiyaların parametrləri [3] işlərdə ətraflı təsvir olunub. Nəticələrin təqdimi və təhlili zamanı peptid quruluşlarının konformasiyalara, əsas zəncirin formalarına və peptid skeletinin şeyplərinə əsaslanan klassifikasiyadan istifadə olunmuşdur. Bu klassifikasiya "ağac" prinsipinə görə qurulmuşdur: konformasiya variantları əvvəl peptid skeletinin şeyplərinə bölünür və hər bir şeypə əsas zəncirin müəyyən formaları daxildir, hər forma isə bir sıra konformasiyalarla təmsil olunur. Belə olduqda, n sayda amin turşusundan ibarət ardıcıllığa aid olan şevplərin sayı ümumi halda 2^{n-1} olur. Hər şevpdə peptid zəncirinin formalarının sayı qalıqların R, B, L və P formalarının kombinasiyası ilə, hər bir qalığın formalarının sayı isə qalıqların sərbəstlik dərəcələrinin sayı ilə müəyyənləşir. Amin turşularının əsas zəncirinin forması $R(\phi,\psi=-180^{0}-0^{0})$, $B(\phi=-180^{0}-0^{0})$ $180^{\circ}-0^{\circ}, \psi=0^{\circ}-180^{\circ}), L (\phi,\psi=0^{\circ}-180^{\circ}), P(\phi=0^{\circ}-180, \psi=-180^{\circ}-0^{\circ})$ simvolları ilə işarə olunur. Bu işarələmələri əsas götürməklə müəyyən identifikatorlar sistemindən istifadə olunmaqla hər bir qalığın konformasiya vəziyyəti X_{ii} ilə təsvir olunur. Burada X əsas zəncirin R, B, L və ya P formalarını, ij= 11...,12...,13...,21...,22,...23,... yan zəncirin birqat kimyəvi rabitələri ətrafındakı fırlanmalara uyğun gələn χ_1 , χ_2 ,.... ikiqat bucaqların qiymətlərini ifadə edir: «1» indeksi χ bucağının 0⁰ ilə 120⁰, «2» indeksi 120⁰ ilə -120⁰ və «3» indeksi -120° ilə 0° aralarında olan qiymətlərini göstərir. Müəyyən ardıcıllıqdakı amin turşu qalıqları formalarının kombinasiyası fraqmentin əsas zəncirin formasını müəyyənləşdirir. Belə ki, iki amin tursusundan ibarət olan fraqment üçün əsas zəncirin iki növ forması mümkündür: bükük və açıq. Onlar, müvafiq olaraq, f və e-şeypləri vasitəsilə təsvir olunur. f-şeypinə əsas zəncirin RR, RB, LL, LP, PR, PB, BL vo BP, e-seypino iso BB, BR, RL, RP, PL, PP, LB vo LR formaları daxildir. İkiqat fırlanma bucaqlarının qiymətləri IUPAC-IUB nomenklaturasına [4] uyğundur. Hesablamalar konformasiya enerjisinin lokal minimumlarının tapılması ücün FORTRAN algoritmik dildə yazılmış universal programdan [5-6] istifadə edərək personal kompüterlərdə aparılmışdır.

Biopolimerlərin elektron quruluşlarının hesablamaları üçün hazırlanmış CNDO kvant-kimyəvi metodun köməyi ilə HyperChem 8.03 proqramlar paketindən [7] (<u>http://www.hyper.com</u>) istifadə olunmuşdur.

Nəticələrin təhlili

Birinci mərhələdə Val-Trp dipeptidinin konformasiya profilləri molekulyar mexanika üsulu ilə araşdırılmışdır. Molekulun atomlarının nömrələnməsi (a) və kimyəvi işarələnməsi (b) ilə təsvir olunmuş hesablama modeli şəkil 1-də təqdim olunub. Molekulu təşkil edən amin turşu qalıqlarının əsas zəncirləri Ramaçandran xəritələrinə uyğun olaraq R, B və L formalarda ola bilər. Triptofanın ψ bucağı molekulun C-ucundakı yalnız iki oksigen atomunun fəzada yerləşməsini təyin etdiyindən bu qalığın B və R formaları eyni olduğu qəbul edilə bilər. Bu səbəbdən dipeptidin əsas zənciri açıq olan konformasiyalar BB, LB və RL, əsas zənciri bükülü olanlar konformasiyalar isə RR, BL və LL formalarda baxılmışdır. Aminturşu qalıqlarının χ bucaqlarına yan zəncirlərinin dayanıqlı vəziyyətlərinə uyğun gələn qiymətlər verilmişdir. Belə ki, hər iki qalığın yan zəncirilərinin χ_1 bucaqları üçün 60^0 , 180^0 , -60^0 torsion minimumları nəzərə alınmışdır. Valinin χ_2 və χ_3 bucaqlarına 180^0 , Trp χ_2 bucağına isə 90^0 və -90^0 qiymətlər verilmişdir ki, molekulun φ , ψ , ω , χ_1 , χ_2 ,.... torsion bucaqlarına fırlanma sərbəstliyi verərək 108 sayda konformasiyalar üçün molekuldaxili potensial enerjisi minimizasiya edilmişdir.

Molekulu təşkil edən qalıqların böyük həcmli olması səbəbindən onların yan zəncirlərinin qarşılıqlı təsirləri əsas stabilləşdirici faktordur. Molekulun N- və C-uclarında yerləşən əks yük daşıyan atom qruplarının arasında elektrostatik qarşılıqlı təsirlər də müəyyən dərəcədə stabilləşdirici effekt göstərir. Müəyyən olunmuşdur ki, şeyplər arasında enerjiyə görə diferensiasiya çox cüzidir (cədvəl 1). Hesablanmış konformasiyaların yalnız 11 %-i 0-3 kkal/mol nisbi enerji intervalında reallaşırlar. Diferensiasiyanın belə zəif olması mümkün olan iki şeypin reallaşmaq şansının praktik olaraq eyni olmasından xəbər verir. Bununla bərabər əsas zəncirin formaları və konformasiyaları arasında kəskin enerji diferensiasiyasının baş verdiyi müəyyənləşdirilmişdir. Bu onu göstərir ki, dipeptidin enerjisi amin turşularının həm əsas zəncirləri, həm də yan zəncirlərinin vəziyyətlərinə çox həssasdırlar. Aşağıenerjili konformasiyalardakı qalıqlararası təsir enerjiləri, həmçinin qeyri-valent, elektrostatik, torsion qarşılıqlı təsir enerjilərinin verdikləri paylar və nisbi enerjiləri Cədvəl 2də əks olunmuşdur.

Cədvəl 1

Val-Trp dipeptidi üçün hesablanmış konformasiyaların enerjiyə görə paylanması

	Enerji intervalı (kkal/mol)					
Şeyp	0-1	1-2	2-3	3-4	4-5	>5
e	-	1	3	7	14	29
f	1	4	3	7	8	31

Cədvəl 2

Val-Trp dipeptidinin 0-3 kkal/mol enerji intervalındakı konformasiyalarının enerji parametrləri (kkal/mol)

	1		Val -Trp	Enerji payları		
Şeyp	Konformasiya	E _{nis.}	qarşılıqlı			
			təsir enerjisi	$E_{q/v}$	E _{el}	E _{tors}
	$R_{222}R_{33}$	0.0	-13.59	-7.93	-1.29	-0.90
	$B_{122}L_{33}$	1.13	-11.97	-7.70	-1.01	1.53
	$R_{222}R_{31}$	1.35	-12.28	-6.73	-1.12	0.89
	$R_{222}R_{11}$	1.41	-12.24	-6.29	-1.56	0.95
f	$B_{122}L_{31}$	1.66	-11.38	-7.39	-0.89	1.62
	$B_{122}L_{33}$	2.90	-10.86	-5.87	-1.01	1.46
	$B_{322}L_{33}$	2.98	-10.89	-6.39	-0.96	2.00
	$R_{222}R_{13}$	2.99	-11.84	-5.04	-1.82	1.53
	$B_{122}B_{33}$	1.79	-9.74	-7.98	0.37	1.07
	$B_{222}B_{33}$	2.28	-9.82	-7.51	0.48	1.00
e	$B_{122}B_{11}$	2.67	-8.41	-7.12	0.39	1.08
	$B_{322}B_{33}$	2.97	-9.47	-6.96	0.35	1.27

Yalnız əsas zəncirin f şeypinin LL formasında və e şeypinin LB və RL formalarında olan konformasiyaların yüksək enerjisi olduğu sübut edilmişdir; bu formaların ən yaxşı nümayəndələrinin nisbi enerjiləri müvafiq olaraq 4.38, 3.29 və 4.57 kkal/mol qiymətlərinə sahibdirlər. Molekulun f şeypinin R₂₂₂R₃₃ konformasiyası bu dipeptidin ən dayanıqlı quruluşudur, bu konformasiyada dispersiya, elektrostatik və torsion qarşılıqlı təsirləri ən yaxşı balanslaşdırılmışdır. e şeypinin enerji cəhətdən ən stabil B₁₂₂B₃₃ konformasiyasının nisbi enerjisi 1.79 kkal/mol-dur, bu konformasiyada elektrostatik (1.66 kkal/mol) və torsion qarşılıqlı təsirləri (1.97 kkal/mol) qlobal quruluşa nisbətən sabitləşdirici təsir göstərir. Bu dipeptidin e şeypinə aid olan konformasiyalar monopeptid enerjilər baxımından daha əlverişli olsalar da, f şeypinin konformasiyalarında yan zəncirlər fəzada bir-birinə daha çox yaxındır və effektiv əlaqəlar yaradır. Qeyd edək ki, dipeptidin f şeypinin optimal konformasiyasında valın və triptofan amin turşusu qalıqlarının yan zəncirləri bir-birinə nəzərən koplanar vəziyyətdə yerləşirlər və bu səbəbdən *e* şeypinin optimal quruluşu ilə müqayisədə 3.85 kkal/mol enerji qədər daha effektiv qarşılıqlı təsirlərdə iştirak edirlər. Yan zəncirlərin fəzada belə yerləşməsi molekulu daha kompaktlaşdırır və eyni zamanda yan zəncirlərin atomları ilə molekulun uclarındakı atom qruplarının yaxınlığını təmin edir. Optimal bükülü quruluşun son uclu amin kationu və valinin əsas zəncirindəki karbonil qrupunun oksigen atomu arasında, optimal açıq quruluşun isə triptofanın əsas zəncirinin amid qrupunun nitrogen atomu və molekulun C-uclu karboksil qrupunun oksigen atomları arasında hidrogen rabitələri ilə stabilləşməsi aşkar olunmuşdur. Əsas zəncirin bükülü və açıq formada olan optimal konformasiyaları şəkil 2-də göstərilmişdir. Cədvəl 3-də isə bu quruluşların ikiqat bucaqları göstərilmişdir.

Şək. 2. Val-Trp dipeptidinin əsas zənciri bükülü (a) və açıq (b) formada olan optimal quruluşları

Cədvəl 3

Val-Trp dipeptidinin əsas zənciri bükülü və açıq formada olan optimal quruluşlarının həndəsi parametrləri (dərəcələrlə)

1 ,		•		
Amin	Torsion	Konformasiyalar		
turşuları	bucaqlar	Bükülü	Açıq	
	φ	-42	-71	
	ψ	-65	149	
Val	χ1	178	65	
	χ2	-178	176	
	χ3	180	179	
	ω	179	180	
	φ	-100	-138	
Trp	Ψ	-47	162	
	χ1	-56	-56	
	χ2	-90	-102	

Məlum olduğu kimi, hər bir konformasiya özünəməxsus elektron sıxlığının paylanması və elektron parametrləri ilə xarakterizə olunur. Məhz bu səbəbdən Val-Trp dipeptidinin elektron quruluşunun tədqiqi maraq kəsb edir. Bu məqsədlə kvant-kimyəvi üsulun köməyi ilə molekulun iki xarakterik optimal konformasiyaları üçün bir sıra elektron parametrlər, HOMO və LUMO enerjiləri, enerji boşluğu, elektrik dipol momenti, atomların parsial yükləri hesablanmışdır (cədvəllər 4 və 5).

Cədvəl 4

Parametrlər	Bükülü quruluş	Açıq quruluş		
Tam enerji (kkal/mol)	-137991.536	-137998.838		
Rabitə enerjisi (kkal/mol)	-12783.648	-12790.950		
İzolə olunmuş atom enerjisi	-125207.888	-125207.888		
(kkal/mol)				
Elektron enerjisi (kkal/mol)	-775052.542	-776645.650		
Nüvələrarası qarşılıqlı təsir	637061.006	638646.812		
enerjisi (kkal/mol)				
Əmələ gəlmə istiliyi (kkal/mol)	-8437.589	-8444.891		
Dipol momenti (D)	21.517	25.598		
E _{HOMO} (eV)	-7.174	-7.109		
E _{LUMO} (eV)	0.853	0.959		
Enerji boşluğu, ΔE (eV)	8.027	8.067		

Val-Trp dipeptidinin əsas zənciri bükülü və açıq formada olan optimal quruluşlarının elektron parametrləri

^{*}*Qeyd*: E_{HOMO} - yüksək dolmuş molekulyar orbital enerjisi, E_{LUMO} - aşağı dolmamış molekulyar orbital enerjisi

Cədvəl 4-dən göründüyü kimi, bükülü və açıq optimal quruluşlar üçün tam enerji, rabitə enerjisi və əmələ gəlmə istiliyi yalnız 7.302 kkal/mol qiyməti ilə cüzi fərqlənir, elektron enerjisi 1593.108 kkal/mol giyməti ilə, nüvələrarası qarsılıqlı təsir enerjisi isə 1585.806 kkal/mol-qiyməti ilə xeyli fərqlənir. Müəyyən edilmişdir ki, peptid zəncirin bükülməsi nəticəsində molekulun əks yük daşıyan atom qrupları fəzada yaxınlaşır, Val qalığının alifatik yan zəncirindəki və Trp qalığının indol halqasındakı atomlarda yük paylanmasının dəyişməsi baş verir, bu da ki müsbət yükün sürüşməsinə səbəb olaraq elektrik dipol momentin 4.081 D azalması ilə nəticələnir. Cədvəl 5-dən göründüyü kimi, molekulun iki xarakterik optimal quruluşlarında valin galığının yan zəncirinin HB, CG1, 3HG2 atomlarının yüklərində gözəçarpan fərq var, CB, 2HG1, 3HG1, 1HG2, 2HG2 atomlarının yüklərində isə cüzi fərq var; triptofan qalığının əsas zəncirinin amid qrupunun H atomunun və indol halqasının CE3, HE3, CZ3, CH2 atomlarının yüklərində fərq var. Hər iki quruluşda α-amin qrupunun üç H atomları, valinin karbonil qrupunun C atomu, triptofanın amid qrupunun H atomu, molekulun karboksil qrupunun C atomu, triptofanın indol halqasının HE1 və CE2 atomları böyük qiymətə malik müsbət yük daşıyırlar, lakin valin qalığının əsas zəncirinin karbonil qrupunun O atomu, triptofan qalığının əsas

zəncirinin amid qrupunun N atomu, indol halqasının NE1 atomu, son uclu karboksil qrupunun iki O atomları isə böyük qiymətə malik mənfi yük daşıyırlar. Beləliklə, hesablamalar Val-Trp dipeptidinin iki xarakterik optimal konformasiyalarının fəza və elektron quruluşlarının oxşar və fərqli xüsusiyyətlərini müəyyənləşdirdi.

Cədvəl 5

Atomun №-si	Atom	Bükülü quruluş	Açıq quruluş
1	$N(NH_3^+)$	-0.002821	-0.002582
2	$1 H (N H_3^+)$	0.218648	0.206253
3	CA Val	0.021472	0.021750
4	HA Val	0.037390	0.031410
5	C Val	0.335570	0.347736
6	O Val	-0.330510	-0.382741
7	CB Val	0.035731	0.046912
8	HB Val	0.013510	-0.013253
9	CG1 Val	-0.012649	-0.024723
10	1HG1 Val	0.026878	0.029530
11	2HG1 Val	0.027975	-0.017878
12	3HG1 Val	0.019686	0.043922
13	CG2 Val	-0.019561	-0.019764
14	1HG2 Val	0.031158	0.026404
15	2HG2 Val	0.016204	0.051616
16	3HG2 Val	-0.018549	0.016298
17	$2 H (N H_3^+)$	0.216438	0.220751
18	$3H(NH_3^+)$	0.198107	0.193472
19	N Trp	-0.183781	-0.178205
20	H Trp	0.091040	0.123718
21	CA Trp	0.035786	0.034858
22	HA Trp	-0.012063	-0.009444
23	C (COO ⁻)	0.375965	0.379122
24	O (COO ⁻)	-0.528636	-0.554104
25	CB Trp	0.012010	0.012122
26	1HB Trp	0.002119	0.000375
27	2HB Trp	0.008330	0.011967
28	CG Trp	-0.016843	-0.012206
29	CD1 Trp	0.027650	0.031002
30	HD1 Trp	0.008168	0.010427
31	CD2 Trp	-0.014477	-0.013023
32	NE1 Trp	-0.136279	-0.135412
33	HE1 Trp	0.093516	0.093960
34	CE2 Trp	0.129403	0.128373
35	CE3 Trp	-0.008487	-0.014273
36	HE3 Trp	-0.012912	-0.005634
37	CZ2 Trp	-0.069185	-0.072861
38	HZ2 Trp	-0.003248	-0.002272
39	CZ3 Trp	-0.032111	-0.043269

Val-Trp dipeptidinin əsas zənciri bükülü və açıq formada olan optimal quruluşlarının atom yükləri

40	HZ3 Trp	-0.024850	-0.024906
41	CH2 Trp	0.023997	0.016583
42	HH2 Trp	-0.019424	-0.020653
43	OXT (COO ⁻)	-0.560363	-0.531359

*Qeyd: atomların nömrələri və kimyəvi işarələri şəkil 1-ə uyğun olaraq verilib

Belə nəticəyə gəlmək olar ki, tədqiq olunmuş dipeptid molekulun konkret xarakterik quruluşunun fəzada reallaşması elektron effektlərinə həssas olan ferment-substrat qarşılıqlı təsirlərin spesifikası ilə müəyyənləşə bilər. Alınmış nəticələr antihipertenziv peptidlərin təsir mexanizminin tədqiqində və bunun əsasında yeni bioloji aktiv əlavələrin məqsədyönlü sintezində istifadə oluna bilər.

ƏDƏBİYYAT

- 1. Rudolph S., Lunow D., Kaiser S., Henle T. Identification and quantification of ACE-inhibiting peptides in enzymatic hydrolysates of plant proteins. *Food Chem*, 224(2017)19-25. doi: 10.1016/j.foodchem.2016.12.039.
- Lunow D, Kaiser S, Rückriemen J, Pohl C, Henle T. Tryptophan-containing dipeptides are C-domain selective inhibitors of angiotensin converting enzyme. *Food Chem.* 166 (2015)596-602. doi: 10.1016/j.foodchem.2014.06.059.
- Godjayev N.M., Akyuz S., Akverdieva G.A., A molecular mechanics conformational study of peptide T, J. Mol. Structure. 403 (1997) 95-110. https://doi.org/10.1016/S0022-2860(96)09410-0
- 4. IUPAC-IUB. Quantities, Units and Symbols in Physical Chemistry, Blackwell Scientific, Oxford, (1993). https://old.iupac.org/publications/books/gbook/green_book_2ed.pdf
- 5. Godjayev N.M., Maksumov I.S., Ismailova L.I., Program of semiempirical calculations of conformations of molecular complexes, Zh.strukt.khim, 4(1983) 147-148 (in Russian)
- Akverdieva G.A., Godjayev N.M., Improvement of program of calculation of molecular conformation, J. Modern Technology & Engineering.2(2017)140-145. http://jomardpublishing.com/UploadFiles/Files/journals/JTME/V2N2/HakverdiyevaG.pdf
- 7. Allinger N.L., Yuh Y., QCPE 395, Quantum chemistry program exchange, Indiana Univ., Indiana, (1982)

CONFORMATIONAL AND ELECTRONIC PARAMETERS OF ANTIHYPERTENSIVE DIPEPTIDE

S.G.RAHİMZADE, G.A.AKVERDIEVA

SUMMARY

In the presented study, a computer modeling of the antihypertensive dipeptide Val-Trp was carried out. The spatial structure of the molecule was studied by the method of theoretical conformational analysis, the electronic structure was investigated on the basis of quantum chemical calculations. The geometric, energy and electronic parameters of the optimal conformations of the dipeptide were calculated. It was found that the spatial structure of this sequence can be described by conformations with folded and extended forms of the main chain. The similarities and differences in the spatial and electronic structure of two characteristic optimal conformations of this molecule were revealed.

Key words: antihypertensive dipeptide; spatial structure; conformation; electronic parameters

КОНФОРМАЦИОННЫЕ И ЭЛЕКТРОННЫЕ ПАРАМЕТРЫ АНТИГИПЕРТЕНЗИВНОГО ДИПЕПТИДА

С.Г.РАГИМЗАДЕ, Г.А.АХВЕРДИЕВА

РЕЗЮМЕ

В представленном исследовании было проведено компьютерное моделирование антигипертензивного дипептида Val-Trp. Пространственная структура молекулы была изучена методом теоретического конформационного анализа, электронная структура исследована на основе квантово-химических расчетов. Рассчитаны геометрические, энергетические и электронные параметры оптимальных конформаций дипептида. Установлено, что пространственная структура этой последовательности может быть описана конформациями со свернутой и развернутой формой основной цепи. Выявлены сходства и различия в пространственной и электронной структуре двух характерных оптимальных конформаций данной молекулы.

Ключевые слова: антигипертензивный дипептид; пространственная структура; конформация; электронные параметры